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INTRODUCTION

For the purposes of this review, we define metagenomics as
the application of shotgun sequencing to DNA obtained di-
rectly from an environmental sample or series of related sam-
ples, producing at least 50 Mbp of randomly sampled sequence
data. This distinguishes it from functional metagenomics, as
reviewed elsewhere previously (58), whereby environmental
DNA is cloned and screened for specific functional activities of
interest. Metagenomics is a derivation of conventional micro-
bial genomics, with the key difference being that it bypasses
the requirement for obtaining pure cultures for sequencing.
Therefore, metagenomics holds the promise of revealing the
genomes of the majority of microorganisms that cannot be
readily obtained in pure culture (62). In addition, since the
samples are obtained from communities rather than isolated
populations, metagenomics may serve to establish hypotheses
concerning interactions between community members.

Indeed, metagenomics is increasingly being viewed as a
baseline technology for understanding the ecology and evolu-
tion of microbial ecosystems, upon which hypotheses and ex-
perimental strategies are built (145), and with new sequencing

technologies producing hundreds of megabases of data for well
under $20,000 (see “Sequencing”), metagenomics is within the
reach of many laboratories.

In this review, we address the bioinformatic aspects of ana-
lyzing metagenomic data sets, stressing the differences with
standard genomic analyses. Although our focus is on bioinfor-
matics, we will begin by considering experimental planning and
implementation of metagenomic projects, as these aspects can
have major impacts on subsequent bioinformatic analyses.

Throughout the review, we will follow the workflow of a
typical metagenomic project at the Joint Genome Institute
(JGI) (summarized in Fig. 1). This process begins with sample
and metadata collection and proceeds with DNA extraction,
library construction, sequencing, read preprocessing, and as-
sembly. Genes are then called on either reads, contigs, or both,
and binning is applied. Community composition analysis is
employed at several stages of this workflow, and databases are
used to facilitate the analysis. All of these stages will be dis-
cussed in detail below. We expect that some details of the
workflow will be different in other sequencing facilities, and
some aspects may be difficult to reproduce in a small research
laboratory embarking alone on a metagenomic project without
the support of a dedicated facility. Moreover, the rapid ad-
vancement of sequencing technologies will change the suite of
tools available for metagenomic analysis. Therefore, rather
than focusing on available tools, we emphasize the consider-
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ations and pitfalls of a typical metagenomic project. We hope
that most considerations that we highlight will be useful even
when current tools become obsolete.

PRESEQUENCING CONSIDERATIONS

Community Composition

Community composition has a deciding influence on the
types of analyses that can be performed on a metagenomic
data set. Microbial communities comprise combinations of
bacteria, archaea, microbial eukaryotes, and viruses, often with
all four groups co-occurring in a single habitat. Historically,
however, microbiologists are trained to think of themselves as
either bacteriologists, virologists, or protistologists, and eco-
logical studies investigating more than one of these taxonomic
groups are still remarkably uncommon (74). To be frank, the
authors are no exception; therefore, when we talk about com-
munity composition in the following sections, we are referring
primarily to bacterial and archaeal species that have been the
focus of most of our metagenomic studies.

At the current sequencing capacity, metagenomic sequenc-
ing of communities containing eukaryotes, in particular pro-
tists, is mostly cost-prohibitive because of their enormous ge-
nome sizes and low gene coding densities (133). Therefore,
selection of a community that does not contain eukaryotes, or
from which eukaryotes or their DNA can be excluded, is an
important consideration prior to embarking on a metagenomic

analysis. For example, one of the main reasons that the hindgut
of a higher rather than lower termite was sequenced (146) is
because the former lacks protist symbionts. When sequencing
microbial communities that are found in tight symbiotic rela-
tionships with eukaryotic hosts, the removal of host cells or
extracted host DNA is important to avoid eukaryotic contam-
ination. For example, in the analysis of a gutless worm micro-
bial symbiont community, host cells were physically separated
from bacterial endosymbiont populations using a Nycodenz
gradient (150).

Simply excluding eukaryotes from a metagenomic analysis is
not ideal from an ecological perspective, as it compromises our
ability to assess a microbial community in its entirety. An
alternative or complementary strategy could be to obtain mo-
lecular data at the RNA (metatranscriptomics) or protein
(metaproteomics) level, thus bypassing the problem of large
amounts of noncoding eukaryotic sequence data. Emerging
sequencing technologies such as pyrosequencing (89) may ul-
timately allow metagenomic sequencing of communities com-
prising eukaryotes, but the data are likely to present numerous
challenges for many downstream bioinformatic analyses (see
“Selection of Sequencing Technology”).

Within the sequence-tractable bacterial, archaeal, and viral
components of a community, community complexity should be
assessed prior to shotgun sequencing (see “Premetagenome
Community Composition Profiling” for a description of assess-
ment methods). Community complexity is a function of the
number of species in the community (richness) and their rel-
ative abundance (evenness). A community with more species
that are closer to equal abundance is more complex than a
community with less species that have unequal abundance. As
a consequence, for a constant sequencing effort, sequence data
from a less complex community will tend to assemble into
larger contigs (contiguous genomic stretches comprised of
overlapping reads). However, in our experience, the key vari-
able affecting the type of downstream analyses that can be
performed on a metagenomic data set is the presence or ab-
sence of dominant populations regardless of the total number
of species. Dominant populations that comprise more than a
few percent of the total number of cells or virions in a com-
munity will have a higher representation in a metagenomic
data set, resulting in a greater likelihood of assembly and
recovery of contigs. Note that we define assembled contigs
arising from a population as composite genomic fragments
because each component read likely comes from a different
individual within the population in which individuals are usu-
ally not clonal.

We therefore distinguish between two basic types of com-
munities throughout this review: those comprising dominant
populations and those that do not. Broadly speaking, commu-
nities of the first type produce contigs of �10 kbp up to several
hundred kbp, depending on the degree of dominance and
amount of sequence obtained. Examples include simple com-
munities that are comprised mostly of a few dominant species,
such as acid mine drainage biofilms (138) and a gutless worm
symbiont community (150). However, species-rich communi-
ties can also fall into this category, such as enhanced biological
phosphorus-removing (EBPR) sludge (47) and an anaerobic
ammonia-oxidizing reactor (129), which have one dominant
population flanked by a long tail of low-abundance species.
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FIG. 1. Typical workflow for Sanger-based metagenomic projects
of bacterial and archaeal communities at the JGI. Oval boxes indicate
processes, and half-circles indicate data. See the text for discussion.
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Communities of the second type lack populations abundant
enough to result in assembled contigs of �10 kbp using on the
order of 100 Mbp of Sanger data (Fig. 2). Such communities
also tend to be species rich.

Sequencing of a community with dominant species is likely
to reproduce a significant part of the genomes of the dominant
organisms and, in some cases, near-complete genomes (47,
138). Therefore, analysis of large genomic fragments is similar
to conventional comparative genomics. In contrast, sequences
obtained from a complex system without dominating species
will not contain large genomic fragments of any component
population using current technologies (135, 140). The analysis
will therefore normally be focused on averaged properties of
the community, such as gene content and abundance, since
information on any given component species will be sparse.

Selection of Sequencing Technology

The number of sequencing technologies is currently expand-
ing, drawn by demand to bring down the cost of sequencing. At
the time of writing of this review, Sanger (dye terminator)
sequencing (118, 119) remains the major source of met-
agenomic sequence data. Alternative strategies have also been
used, namely, pyrosequencing (89), which has been applied to
viral (9) and bacterial (36) communities. Advantages of pyro-
sequencing over Sanger sequencing include a much lower per-
base cost and no requirement for cloning (114). The latter is
useful for both bacterial and virion communities because of the
demonstrated cloning bias of bacterial genes (127) and pro-
moters (48) in Escherichia coli and difficulties with cloning viral
nucleic acids (17). However, the major disadvantage of pyro-
sequencing has been its average read length, initially �100 bp
on the GS20 platform and �200 bp on the GS FLX platform.
Reads of this length present additional challenges for assembly
and gene calling. Indeed, most studies that have used pyrose-
quencing for metagenomic analysis did not attempt assembly

or gene calling, instead relying on similarity searches of the
short reads against a reference database as the basis of the
analysis (9, 36) (see also Table 1). Therefore, the sections on
bioinformatics processing below refer mostly to Sanger data.
Notably, however, 454 Life Sciences is currently evaluating
400- to 500-bp (titanium) pyroreads (http://www.454.com/). If,
in conjunction with longer read length, technical problems
such as reagent dilution and maintaining nucleotide extension
synchronization (114) can be adequately addressed to produce
read quality comparable to that of Sanger data, then pyrose-
quencing will be able to supplant Sanger sequencing as the
preferred data type for metagenomic analysis.

Combinations of different sequencing technologies have
been evaluated for producing high-quality draft assemblies
of microbial isolates (51) that could be applied to metage-
nomes containing one or more dominant populations. The
Illumina (http://www.illumina.com) and ABI SOLiD (http:
//www.appliedbiosystems.com) sequencing technologies have
not yet been applied to environmental samples, but their ap-
plication is likely to be limited to the resequencing of dominant
populations since reads are currently too short (�50 bp) to be
used for de novo assembly or gene calling. One next-genera-
tion sequencing technology worth keeping an eye on is real-
time single-molecule sequence determination that aims to pro-
duce multikilobase-length reads at throughputs comparable to
those of short-read technologies (71; http://visigenbio.com). If
such an ambitious goal can be achieved with acceptable se-
quence quality and cost, this platform will become the choice
for metagenomic studies, since even single reads will contain
contextual data of one or more neighboring genes, and assem-
bly will be simplified.

How Much Sequence Data?

A common question asked by researchers embarking on
their first metagenomic analysis is how much sequence data

FIG. 2. Contig size distribution for assemblies of around 100 Mbp of Sanger data obtained from each of seven microbial communities. The gray
area indicates small contigs with a higher likelihood of chimeric assemblies (see “Assembly”). Communities with contigs found mostly in this zone
(termite hindgut [146], soil, and whale fall [135]) lack dominant populations, whereas communities with larger contigs outside this zone have
dominant populations: gutless worm (150), phosphorus-removing sludges from U.S. and Australian (OZ) laboratory-scale bioreactors (47), and an
acid mine drainage (AMD) biofilm (138). Note that the gutless worm scaffolds (end-pair-linked contigs) are shown, explaining the larger size.
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they should request or allocate for their project. Unlike ge-
nome projects, metagenomes have no fixed end point, i.e., a
completed genome. Therefore, decisions on how much se-
quence data to generate for an environmental sample have
been based on pragmatic reasons, chiefly sequencing budget.
For example, 100 Mbp is a typical Sanger sequencing request
for a metagenomic project through the JGI community se-
quencing program (http://www.jgi.doe.gov/CSP/index.html).
However, with the per-base cost of sequencing continuing to
drop, other more objective criteria can be brought to the fore,
such as estimates of sequence coverage (number of reads cov-
ering each base in a contig) of the community. Since species do
not have uniform abundance in a community, it is simpler to
address the coverage of individual populations for which an
approximate average genome size is known. For example, if a
dominant population represents 10% of the total community
and 100 Mbp is obtained, then this population is expected to be
represented by 10 Mbp, assuming completely random sampling
of the community. If the average genome size of individuals in

this population is 2 Mbp, then an average of 5� coverage of
the composite population genome will be expected. To place
this in perspective, 6� to 8� coverage of microbial isolates is
a common target to obtain a draft genome suitable for finish-
ing. In the most extreme example to date, the complete ge-
nome of a low-abundance uncultured species, “Candidatus
Cloacamonas acidaminovorans,” was elucidated from a com-
plex anaerobic digester community at the cost of the end se-
quencing of more than a million fosmids, generating 1.7 mil-
lion reads (1.12 Gbp) (4). Ultimately, the objectives of the
study should guide sequence allocation. For example, if the
aim is to determine the single-nucleotide polymorphism (SNP)
frequency profile of a dominant population as part of a pop-
ulation genetic analysis (67), then ideally, a coverage of 20� or
greater will be needed for the dominant population. If the aim
is to identify overrepresented gene functions in the community
as a whole (see “Gene-Centric Analysis”), then much less
sequence data will be needed. Indeed, we recently found that
an extremely low coverage of a highly complex and stratified

TABLE 1. Gene prediction methods used in metagenomic projects

Project Institution(s) Gene prediction method Reference

Acid mine drainage biofilm communities
from Richmond mine

University of California, Berkeley,
JGI

fgenesb 138

Aquatic microbial communities from
Drinking water networks

University of Goettingen BLAST 120

Aquatic microbial communities from
Soudan Mine in Minnesota

San Diego State University BLAST 36

Fossil microbial community from Whale
Fall at Santa Cruz Basin of the Pacific
Ocean

JGI fgenesb 135

Gut microbiome of healthy human
adults

J. Craig Venter Institute, Washington
University, Stanford University

BLAST 50

Gut microbiome of healthy human
Japanese infants and adults

University of Tokyo Metagene 77

Gut microbiome of lean and obese mice Washington University BLAST 136
Gut viriome of healthy human adults Genome Institute of Singapore BLAST 152
Marine archaeal anaerobic methane

oxidation communities from Eel River
sediments

JGI, MBARI fgenesB 57

Marine microbial communities from
Bras del Port saltern in Santa Pola,
Spain, crystallizer pond

Universitas Miguel Hernandez GLIMMER 80

Marine microbial communities from
Global Ocean Sampling

J. Craig Venter Institute Similarity searches and
filtering of ORFs

115

Marine microbial communities from
Sargasso Sea

J. Craig Venter Institute BLAST 140

Marine plankton communities from
deep Mediterranean Sea Ionian
station Km3

Universitas Miguel Hernandez BLAST 93

Marine planktonic communities from
Hawaii Ocean Times Series Station

JGI BLAST 33

Marine RNA viral communities from
coastal samples

University of British Columbia BLAST 27

Marine viral communities from ocean
environments

SDSU BLAST 9

Olavius algarvensis (gutless worm)
microbiome from Mediterranean Sea

Max Planck Institute, JGI mORFind 150

Oral TM7 microbial communities of
healthy human adults

JGI, Stanford University fgenesb 88

Soil microbial communities from
Minnesota farm

JGI fgenesb 134

Wastewater EBPR microbial
communities from bioreactor

JGI fgenesb 47
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hypersaline mat community (estimated dominant population
coverage of �0.01�) was still sufficient to detect genetic gra-
dients in the mat community using 10 Mbp per layer (76).

SAMPLING AND DATA GENERATION

Sample Collection for Metagenomes and Other
Molecular Analyses

Metagenomes are sequence inventories of genomic DNAs
from environmental samples. Extraction and purification of
high-quality DNA are still some of the main bottlenecks in
metagenomics, compounded by the fact that there is not a
“one-size-fits-all” extraction method for all environmental
samples. Low-biomass samples yield small quantities of DNA
that may be insufficient for library construction. In general,
microgram quantities of genomic DNA are required for clon-
ing (see below) and pyrosequencing. Whole-genome amplifi-
cation has been used on small yields of environmental DNAs
to provide microgram quantities for sequencing (9). One major
advantage of this technique is that it can process and retain
single-stranded DNA, which is invaluable for viral samples.
However, the relative representation of genomic DNAs may be
compromised, particularly if the amount of starting material is
small (10, 12, 110, 111). This is important to keep in mind for
downstream comparative analyses, particularly between
samples that used whole-genome amplification and those
that did not.

In many cases, it may be beneficial to collect additional
sample material for complementary analyses. Examples of ad-
ditional molecular analyses that will leverage and enhance
metagenomic data from cellular microbial communities in-
clude metatranscriptomics (54, 74, 139), metaproteomics (81),
viral metagenomics (37), and imaging methods such as fluo-
rescence in situ hybridization (FISH) using group-specific oligo-
nucleotide probes (8, 62, 144). For example, colocalization
studies by combining FISH with digital image analysis can
provide spatial information in structured ecosystems to sup-
port metabolic interactions between community members in-
ferred from metagenomic data.

While it is sometimes possible to resample many habitats,
two temporally separated samples may not be directly compa-
rable. For example, habitats that have seasonal patterns such
as the marine water column (32) cannot be considered equiv-
alent at different times of the year. Even in habitats that do not
show seasonal variation, such as controlled laboratory-scale
bioreactors, community composition may be influenced by
predators, parasites, or other variables that confound compar-
isons of metagenomic data. For example, from an initial met-
agenomic analysis of two laboratory-scale sequencing batch
reactors, we implicated bacteriophages as being important de-
terminants in driving bacterial community composition (74).
Unfortunately, we did not have appropriately stored material
from the original sampling and characterized the virion com-
munity in a reactor sample taken 7 months after the initial
metagenomic sampling. During this time, both the bacterial
and viral communities had changed, complicating the compar-
ative analysis. It is of course impossible to store sample mate-
rial in the appropriate manner for every conceivable down-
stream molecular analysis, but as a number of techniques

become more routine, such as metatranscriptomics, metapro-
teomics, metabolomics, and viral metagenomics, subsamples
can be inexpensively stored in standardized ways to provide
researchers with the potential to perform these analyses if
needed.

Sample Metadata Collection

Collecting collateral nonsequence data associated with an
environmental sample greatly enhances the ability to interpret
the sequence data, particularly for a comparative analysis of
temporal or spatial series (33, 140). Such “metadata” include
biochemical data such as pH, temperature, and salinity; geo-
graphical data such as global positioning system coordinates;
and depth, height, and sample-processing data such as collec-
tion date, DNA extraction method, and clone library details
(42). The type of metadata can vary considerably depending on
the sample type; for instance, environmental and clinical sam-
ples historically have very different metadata. Databases hous-
ing metagenomic data already include various degrees of meta-
data (91, 123), but cross-referencing such data is problematic
due to a lack of consistency and standards. Initiatives are under
way to standardize metadata collection, e.g., by use of a con-
trolled vocabulary, where possible (42). Such data are expected
to prove invaluable once enough data are generated to com-
pare communities along environmental, spatial, or longitudinal
gradients (140).

Premetagenome Community Composition Profiling

To facilitate decisions on sequence allocation and process-
ing, the community composition of the environmental sample
under study should be assessed prior or at least in parallel to
the metagenomic analysis using a conserved marker gene sur-
vey, ideally conducted on the same sample. Indeed, several
samples could be prescreened using marker genes to aid in the
selection of a subset for metagenomic analysis. The small-
subunit rRNA (16S rRNA) gene is usually the marker gene of
choice for bacterial and archaeal communities owing to its
widespread use and consequent large reference database (25,
34). One drawback of the 16S rRNA gene is that copy number
can vary by an order of magnitude between bacterial species,
which, along with PCR-induced biases (130, 143), can skew
estimates of community composition. PCR products are nor-
mally cloned and sequenced to provide a semiquantitative phy-
logenetic profile of a community. At the JGI, we typically
sequence one 384-well plate containing 16S clones (called a
ribosomal panel) to provide a baseline estimate of community
structure.

For most microbial communities, however, 384 clones are a
gross undersampling of diversity and highlight only relatively
dominant taxa. Other approaches that have higher resolution
include microarrays to which fluorescently labeled 16S PCR
amplicons or rRNAs are applied (19, 105, 108). For example,
the Phylochip comprises 500,000 probes redundantly targeting
�9,000 phylogenetic groups (operational taxonomic units) and
has a sensitivity that is 1 to 2 orders of magnitude higher than
that of a PCR clone library sequenced to �102 (19). On the
downside, species that are not represented by probes on the
microarray will be missed, and the relative abundance of se-
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quence types cannot be easily estimated. This means that dom-
inant populations are currently difficult to detect from Phylo-
chip data alone.

Pyrosequencing has recently been applied to PCR-amplified
16S rRNA genes, providing 100- or 200-bp 16S “pyrotags” to
evaluate community composition (61, 63, 126). This approach
has the benefits of high resolution (due to the large number of
pyrotags, �500,000 per bulk 454-FLX run) comparable to that
of a 16S microarray while retaining relative amplicon abun-
dance like a clone library. The main limitation of this approach
is the reduced phylogenetic resolution afforded by 100 to 200
bp, so the method is dependent on a high-quality reference 16S
database for the accurate classification of pyrotags.

FISH using group-specific 16S rRNA gene-targeted oligo-
nucleotide probes (8, 144) can also be used to profile commu-
nity composition. Fluorescently labeled cells can be quantified
by microscopy either manually or with the aid of image analysis
software (28) or in combination with flow cytometry (121). In
principle, FISH-based counting is the most accurate method
for determining relative and absolute abundances of popula-
tions since it is not affected by 16S copy number variation. In
practice, only a few phylogenetic groups can be targeted per
sample due to logistical considerations (e.g., number of fluo-
rochromes that can be visualized simultaneously, availability,
and cost of suitable probes), and for gross community compo-
sition estimates, these tend to target broader groups such as
domains or phyla. Therefore, the complete or even widespread
population-level characterization of communities using FISH
has not been feasible to date.

Since no universally conserved marker genes exist for vi-
ruses, none of the methods described above can be used to
profile viral communities, and direct metagenomic investiga-
tions are the only option at this point.

Shotgun Library Preparation

Shotgun clone libraries for genome sequencing are typically
prepared using three different average sizes of cloned DNA: 3,
8, and 40 kbp (fosmids). This facilitates primarily assembly and
finishing since longer clones will have a greater likelihood of
spanning gaps and repeats in the genome assembly. The JGI
uses a ratio of 4:4:1 for 3, 8, and 40 kbp end-sequence data to
produce high-quality draft assemblies (largest correctly assem-
bled contigs) economically. We have more or less adopted the
same insert-size libraries and sequencing ratios for met-
agenomic projects even though the end product may be vastly
different from that of a genomic project. In the case of micro-
bial communities with one or more dominant populations, the
ratio of insert-size sequencing will serve the same function of
improving assembly (and occasionally finishing) of composite
population genomes. For microbial communities lacking dom-
inant populations, the main purpose of the larger-size inserts is
to provide gene neighborhood context, usually through the
complete sequencing of selected fosmids (40, 146). Bacterial
artificial chromosomes allow access to even larger pieces of
contiguous genomic DNA from environmental samples (14);
however, they are technically more demanding to prepare than
are fosmids and small-insert libraries.

Occasionally, the environmental sample will dictate which
libraries can be created. For example, despite repeated at-

tempts, DNA extracted from acid mine drainage biofilm sam-
ples could not be obtained with a purity and a molecular weight
high enough to create an 8-kbp or fosmid clone library, limiting
the study to data from a 3-kbp library only (138). The prepa-
ration of clone libraries requires between 5 �g (for a 3-kb
library) and 20 �g (for a fosmid library) of DNA, which often
cannot be obtained directly from low-biomass communities.
Whole-genome amplification via multiple-displacement ampli-
fication can circumvent this problem, but the typical length of
the amplified DNA, �15 kbp, is too short in general to allow
large-insert-library construction, although fosmid libraries
from amplified environmental DNA have been reported (99).

Sequencing

At the JGI, metagenomic projects are sequenced in at least
two stages for quality control (QC). The first stage is a 20-plate
QC of a 3-kbp insert (pUC) library generating approximately
10 Mbp of Sanger sequence data followed by a preliminary
informatic analysis to guide the allocation of the remainder
(majority) of the sequence allotment. First and foremost, the
QC sequencing confirms that the shotgun clone libraries pro-
duce sequence data of sufficient quality to warrant further
sequencing. For genome projects, sufficient quality typically
means that 95% of clones produce reads with at least 650 Q20
bases (see “Sequence Read Preprocessing”), i.e., a 95% pass
rate. For metagenomic projects, this bar is dropped sometimes
to as low as an 85% pass rate because of the greater difficulty
in making high-quality libraries from environmental DNAs and
the often precious nature of difficult-to-collect environmental
samples. The preliminary analysis usually involves assembly
but not gene prediction primarily to confirm initial community
composition estimates but also to determine if populations can
be easily discriminated in the data. For example, similarity
searches against public nucleotide and protein databases will
identify populations via conserved marker genes and provide
some indication of relative abundance according to the size
and read depth of the contig that the marker genes were found
on. A histogram of contig read depth will alert the researcher
to the presence of one or more dominant populations, since 10
Mbp is sufficient to result in the assembly of genomic frag-
ments from dominant populations. Plotting contig depth
against another variable, such as GC content, often helps to
discriminate populations. If a dominant population was ex-
pected based on community composition profiling and not
noted by contig read depth, this indicates greater-than-ex-
pected microheterogeneity in the population hindering assem-
bly (see “Finishing”) or a technical error in the experimental
workup. For example, QC sequencing of EBPR sludge from a
laboratory-scale bioreactor revealed that the primary target
organism “Candidatus Accumulibacter phosphatis” type I was
grossly underrepresented relative to the initial community
composition estimate (4% versus 60%). The discrepancy arose
because this organism was poorly lysed in the DNA extraction,
a fact that was missed because the community was profiled
using a type I-specific FISH probe (S. He and K. McMahon,
personal communication). At this point, it was not too late to
reextract DNA from the EBPR sludge using a different
method.
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SEQUENCE PROCESSING

Processing of genomic sequence data and processing of met-
agenomic sequence data have many features in common,
namely, read preprocessing, assembly including selected in-
stances of finishing (dominant populations), and gene predic-
tion and annotation. As mentioned above, the key difference
between genomes and metagenomes is that the latter, with the
exception of finishable dominant populations, do not have a
fixed end point, i.e., one or more completed chromosomes as
for microbial isolate genomes. This means that metagenomes
rarely progress beyond draft assemblies and lack many of the
quality assurance procedures associated with producing fin-
ished genomes. Therefore, greater care needs to be taken
when processing sequences of metagenomic data sets than
when processing genomic data sets.

Sequence Read Preprocessing

Preprocessing of sequence reads prior to assembly, gene
prediction, and annotation is a critical and largely overlooked
aspect of metagenomic analysis. Preprocessing comprises the
base calling of raw data coming off the sequencing machines,
vector screening to remove cloning vector sequence, quality
trimming to remove low-quality bases (as determined by base
calling), and contaminant screening to remove verifiable se-
quence contaminants. Errors in each of these steps can have
greater downstream consequences in metagenomes than in
genomes and will be discussed in turn.

Base calling is the procedure of identifying DNA bases from
the readout of a sequencing machine. There are surprisingly
few choices for base callers, and the differences between them
for the purposes of metagenomics are small; therefore, we
have no specific recommendation from the ones described
below. By far, the dominant base caller used today is phred
(41). phred initiated the widespread use of probabilistic-based
quality scores, which all later base callers adopted. phred qual-
ity scores are estimates of per-base error probabilities. The
quality score, q, assigned to a base is related to the estimated
probability, p, of erroneously calling the base by the following
formula: q � 	10 � log10(p). Thus, a phred quality score of 20
corresponds to an error probability of 1%. Other frequently
used base callers are Paracel’s TraceTuner (www.paracel.com)
and ABI’s KB (www.appliedbiosystems.com), which behave
very similarly to phred, converting raw data into accuracy prob-
ability base calls. In general, however, metagenomic assemblies
have lower coverage than do genomes, and therefore, errors
are more likely to propagate to the consensus. For complex
communities, the majority of reads will not assemble into con-
tigs, and base-calling errors in these unassembled reads will
appear directly in the final data set.

Vector screening is the process of removing cloning vector
sequences from base-called sequence reads. The complete and
accurate removal of cloning vector sequence is especially im-
portant in metagenomic data sets since these data sets often
have large regions of very low coverage in which each read
uniquely represents a part of a genome. The assembly of these
data without vector trimming can produce chimeric contigs in
which the vector sequence, being common to most reads, acts
to draw together unrelated sequences (Fig. 3). Also, genes may

be predicted on the vector sequence introducing phantom gene
families into downstream analyses (see “Gene-Centric Anal-
ysis”).

A number of different tools are available for vector screen-
ing, including cross_match (www.phrap.org), LUCY (22), and
vector_clip (128). Also, some assemblers include vector trim-
ming as part of a preprocessing pipeline, including PGA (http:
//www.paracel.com) and Arachne (13, 65). The most commonly
used tool is cross_match, which uses a modified Smith-Water-
man algorithm to identify matches to vectors that are extended
to produce optimal alignments. However, cross_match re-
quires exact matches to vector sequences and has no expecta-
tion for the location of the vector sequence in a read. In our
experience, this program frequently fails to remove vector se-
quences because of frequent base-calling errors on the edges of
reads where the vector sequence is found. Another vector-
trimming tool, LUCY, avoids this problem by specifying error
rates as a function of sequence position. In every case that we
have tested to date, LUCY results are substantially better than
those achieved with cross_match. The downstream effects of
improved vector screening are fewer spurious protein predic-
tions and fewer errors in predictions of real protein-coding
sequences, particularly open reading frames (ORFs) at the
ends of reads (see “Gene Prediction and Annotation”).

Most postprocessing pipelines appear to ignore base quality
scores associated with reads and contigs, and few take posi-
tional sequence depth into account as a weighting factor for
consensus reliability. Therefore, low-quality data will be indis-
tinguishable to the average user from the rest of the data set
and should be removed. An extreme example of a poor-quality
read that inadvertently passed through to gene prediction is
shown in Fig. 4. In the worst-case scenario, such phantom
genes called on a low-quality sequence may pass unchecked
into public repositories. We recommend quality trimming to be
performed after vector screening, as described above. The rea-
son is that the trimming of low-quality bases might truncate the
vector sequence and impede the ability of vector-screening
programs to recognize the remainder of the vector. In such
cases, significant parts of the vector might still remain for the
next stages of the pipeline. LUCY combines vector and quality
trimming into one tool.

Recognition of sequence contamination of metagenomic
data sets, other than vector sequence, is nontrivial. Sanger data
sets from clonal organisms are routinely screened for E. coli
genomic sequence because E. coli is the cloning vector host,
and small amounts of its genome may get through plasmid
purification. Pyrosequencing, which does not rely on cloning of
DNA into E. coli, will not have this problem; however, other
types of contamination cannot be excluded. For metagenomic
data sets, host contamination screening should be considered
carefully because the environment under study may have E.
coli or close relatives as bona fide members of the community,
and screening would therefore bias the representation of these
species in the data set. Occasionally, the mislabeling of se-
quence plates occurs in production pipelines. These types of
cross-contamination between two data sets can usually be de-
tected if one of the data sets is from an isolate by differences in
GC content or BLAST. If plates from two metagenomic
projects are mixed up, the contamination may be harder to
detect, since neither data set is likely to be homogeneous. It is
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quite common that reads and even contigs are not incorpo-
rated into finished microbial genomes, and these are usually
dismissed as being either low-quality or contaminant se-
quences. In contrast, metagenomic projects will keep high-
quality contaminating reads and contigs, as they will prob-
ably not be easily distinguishable from the rest of the data set
and may therefore skew downstream analyses such as gene-
centric analysis, depending on the degree of contamination.
Presently, there is no solution to this quandary, and suspected
contaminant sequences would need to be investigated on a
case-by-case basis.

Assembly

Assembly is the process of combining sequence reads into
contiguous stretches of DNA called contigs, based on sequence
similarity between reads. The consensus sequence for a contig
is either based on the highest-quality nucleotide in any given

read at each position or based on majority rule, i.e., the most
frequently encountered nucleotide at each position. The num-
ber of reads underlying each consensus base is called depth or
coverage. Sequencing is typically performed from both sides of
an insert in a vector plasmid, and such pairs are called paired
reads or mate pairs. Knowledge of the approximate insert size
of the library facilitates the production of a more accurate
assembly since mate pairs provide an external constraint to
guide assembly. The presence of paired reads in two different
contigs allows those contigs to be linked into a larger noncon-
tiguous DNA sequence called a scaffold, whose intercontig gap
size can be estimated based on the insert size of the read pairs.
For this reason, large-insert clones such as fosmids are partic-
ularly useful for improving assemblies.

The major cause of misassembly in genomic projects is re-
petitive regions that can be resolved in the finishing process
(79). The assembly of metagenomic projects will also be con-
founded by repeats but pose additional assembly challenges in

FIG. 3. Phrap assemblies visualized with the Consed (53) program. The consensus sequence is shown at the top of the display and is derived
from aligned reads shown below the consensus. Note that the Phrap assembler uses the highest-quality base for the consensus regardless of base
frequency at each position. Read identifiers and orientation (arrowheads) are shown on the left of the display. Low-quality bases and masked
regions are grayed out. Green bars indicate sequence fragments found elsewhere in the assembly. (A) Example of a good-quality assembly with
high read depth. Note the consistent alignment of all residues. (B) Example of a misassembled contig drawn together by a common repeat sequence
(indicated by purple bars at left). Note the misaligned residues in red and the meaningless “consensus” sequence that does not correspond to any
single read below it. (C) Chimeric contig produced by coassembly of closely related strains (haplotypes) in a metagenomic data set. Note that the
consensus sequence is a chimera of the two haplotypes (based on the highest-quality base at each position) and likely does not represent an extant
organism. (Screen shots are printed with permission of the software publisher.)

FIG. 4. Part of the chromatogram of a low-quality read without quality trimming on which multiple nonexistent genes were predicted (bottom).
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the form of nonuniform read depth due to nonuniform species
abundance distribution and the potential for the coassembly of
reads originating from different species. Therefore, not only
can misassembled reads be retained in the final published data
set due to the absence of finishing, but reads from more than
one species can also be assembled together, producing chi-
meric contigs. Coassembly is more likely to happen with reads
from closely related genomes where the sequence similarity is
higher (we routinely observe homologous regions of two or
more strains with up to 4% nucleotide sequence divergence
coassembling) but has been found between reads originating
from phylogenetically distant taxa, with conserved genes serv-
ing as the focal point for misassembly. For example, a contig
from a surface seawater metagenome comprised reads origi-
nating from bacteria and archaea, as evidenced by gene calls,
with the 16S rRNA gene serving as the focal point in this
instance (32). A recent simulation study found that chimeras
are particularly prevalent among contigs lower than 10 kbp in
size (94). High-complexity microbial communities lacking
dominant populations rarely produced contigs larger than 10
kbp (Fig. 2), prompting the recommendation that such data
sets should not be assembled at all (94).

A variety of assembly programs are publicly available, in-
cluding Phrap (www.phrap.org), Arachne (13, 65), the Celera
Assembler (97), PGA (http://www.paracel.com/), and CAP3
(60; for a description and history of these assemblers, we refer
the reader to reference 79). Most currently available assem-
blers were designed to assemble individual genomes or, in
some cases, genomes of polyploid eukaryotes; however, they
were not designed to assemble metagenomes comprising mul-
tiple species with nonuniform sequence coverage, and there-
fore, their performance with metagenomic data sets varies
significantly (94). For example, the Celera assembler does not
assemble contigs with atypically high read depths (based on an
expected Poisson distribution) because it interprets them as
potential assembly artifacts due to the coassembly of repeats,
whereas in metagenomic data, they may be bona fide contigs
arising from dominant populations (140). A second example is
that Phrap is optimized for making maximal use of its input
data using a “greedy” algorithm and will extend contigs as far
as possible. This is a good approach for assembling low-cover-
age nonrepetitive regions from low-quality reads, as it makes
the most of the available data, particularly if the assembly will
be verified by finishing but is not desirable for metagenomes
since it is more likely to produce chimeras when data include
reads from multiple strains and species. More conservative
assembly programs such as Arachne have been shown to pro-
duce smaller but more reliable contigs than Phrap (94).

A useful auxiliary approach to de novo assembly is compar-
ative assembly, that is, aligning reads and/or contigs to a ref-
erence genome of a closely related organism. The AMOS
comparative assembler has been developed specifically for this
purpose (112). For metagenomic data sets, this can improve
the assembly of dominant populations since it provides a mech-
anism to span hypervariable regions in a composite population
genome and is computationally much less expensive than de
novo assembly (4). A major caveat of the approach, however,
is that it will be useful for only a small subset of the average
metagenomic data set since reference genomes cover only a
fraction, and a highly biased fraction at that, of microbial

diversity (see “Postsequencing Community Composition Esti-
mates”).

One thing is clear: there is no magic bullet for assembling
metagenomic data sets, and all assemblers will make numerous
errors. Ideally, therefore, every metagenomic assembly should
be manually inspected for errors before public release. Assem-
bly errors can be easily identified with visualization tools, such
as Consed (Fig. 3) (53), which are used to facilitate genome
finishing; however, the sheer scale of most metagenomic data
sets precludes manual inspection let alone the correction of all
identified assembly errors. One approach that we have taken to
address this limitation is to make two or more assemblies of the
same data using different assemblers (47) to facilitate the iden-
tification of misassemblies during the downstream analysis
phase following gene calling. It is, however, feasible and worth-
while to resolve misassemblies of the largest contigs in a met-
agenomic assembly, especially contigs that are greater in length
than or equal in length to fosmids, using standard initial steps
in the finishing process (79).

The final products of assembly, contigs and scaffolds, are
submitted to public databases as flat text files, meaning that all
information about the underlying reads is lost, including se-
quencing depth and quality scores of each base, length and
overlaps between reads, and quality of vector trimming. This is
not ideal for two reasons. Firstly, the quality of the contigs
cannot be assessed and is also not taken into consideration by
tools such as BLAST. Secondly, meaningful polymorphisms in
the data due to coassembled strains (haplotypes) (see “Ana-
lyzing Dominant Populations”) are lost because a single con-
sensus sequence is submitted. Methods for weighting consen-
sus accuracy and preserving polymorphism information for
subsequent analyses are needed. A first step in this direction
has been taken by public databases with the establishment of
the Trace and Assembly archives, which archive raw read files
and assemblies associated with submitted genomic and met-
agenomic data sets, respectively (147). In practice, however,
most users will work only with the flat text consensus data and
ignore read and consensus quality unless it is presented to
them in a more convenient user interface. Such interfaces are
beginning to be provided by dedicated comparative genome
and metagenome platforms (see Data Management).

Finishing

Genome closure and finishing are commonplace for micro-
bial isolate projects and part of the standard processing pipe-
line at sequence facilities such as JGI. For most metagenomes,
finishing is not possible. However, for dominant populations
within metagenome data sets that have draft-level coverage,
finishing may be an option. This is dependent largely on the
degree of microheterogeneity within the population. Genome
rearrangements such as insertions, deletions, and inversions
will break assemblies, whereas point mutations usually will not.
Even in instances where chromosomal walking along large-
insert clones is used instead of shotgun sequencing, microhet-
erogeneity can still complicate assembly (56). However, there
are now several examples in the literature of complete or
near-complete composite population genomes of uncultivated
organisms derived from environmental sources including Cen-
archaeaum symbiosum, the sole archaeal symbiont of a marine
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sponge (56); Kuenenia stuttgartiensis, an anaerobic ammonia-
oxidizing planctomycete sequenced from a laboratory-scale
bioreactor enrichment (129); a Rice Cluster 1 methanogen
from an enrichment culture (40); “Candidatus Cloacamonas
acidaminovorans,” the first sequenced representative of the
candidate phylum WWE1, from an anaerobic digester (107);
and Ferroplasma acidarmanus, one of a few dominant popula-
tions in an acid mine drainage biofilm (5). In the last case, the
assembly was facilitated by the availability of an isolate genome
(fer1) obtained from the same habitat. The Kuenenia, Rice
Cluster 1 methanogen, and “Candidatus Cloacamonas” ge-
nomes, however, could be assembled without reference to an
isolate genome because the populations were near clonal. We
make the general observation that sequence microheterogene-
ity within populations often seems to reflect spatial heteroge-
neity within the ecosystem from which the populations were
derived. Homogenized systems such as bioreactors or enrich-
ment cultures have produced composite population genomes
with very low levels of polymorphism (40, 107, 129), perhaps
due to the higher likelihood of selective sweeps through the
population curtailing genomic divergence (24). Therefore, if
the goal is to assemble a complete population genome from an
environmental sample, we recommend the use of ecosystems
with low spatial heterogeneity if at all possible or finer-scale
sampling to reduce the effect of spatial heterogeneity.

Gene Prediction and Annotation

Gene prediction (or gene calling) is the procedure of iden-
tifying protein and RNA sequences coded on the sample DNA.
Depending on the applicability and success of the assembly,
gene prediction can be done on postassembly contigs, on reads
from the unassembled metagenome, and, finally, for a mixture
of contigs and individual unassembled reads.

There are two main approaches for gene prediction. The
“evidence-based” gene-calling methods use homology searches
to identify genes similar to those observed previously. Simple
BLAST comparisons against protein databases as well as tools
like CRITICA (11) and Orpheus (46) use such an approach.
Conversely, the second approach, “ab initio” gene calling, re-
lies on intrinsic features of the DNA sequence to discriminate
between coding and noncoding regions, allowing the identifi-
cation of genes without homologs in the available databases.
The use of gene training sets, i.e., sets of parameters derived
from known genes of the same or related organisms, can en-
hance the quality of the predicted genes for some of those
programs (e.g., fgenesB [http://www.softberry.com]), while
others are self-trained on the target sequence (Genemark [16],
GLIMMER [31], and MetaGene [100]).

Pipelines that use a combination of evidence-based and “ab
initio” gene calling are frequently used for complete genomes.
In the first step, genes are identified based on homology
searches of the sequence of interest versus public databases.
Hits to genes in databases are considered to be real genes and
can be used as a training set for the ab initio gene-calling
programs. Subsequently, an “ab initio” method fine-tuned for a
particular genome is used to identify more genes that were missed
in the previous step. One such pipeline, called mORFind, uses a
combination of Orpheus, CRITICA, and GLIMMER.

In metagenomic sequences, genes can originate from many,
frequently diverse organisms. When dominant populations ex-
ist, their sequences can be separated from the rest of the data
set (see “Binning”) and the pipeline generally used for com-
plete genomes applied to this subset of the data. For commu-
nities or their parts that defy assembly or assemble poorly, no
training is possible. In these cases, “generic” gene prediction
models or models fine-tuned to the closest phylogenetic group
can be used. For example, MetaGene (100) is a gene predic-
tion program developed specifically for metagenomic data sets
using two generic models, one for archaea and one for bacte-
ria. Due to the fragmented nature of such data sets and the
quality of the sequencing, gene prediction is further compli-
cated by the fact that many genes are represented only by
fragments, contain frameshifts, or are chimeras due to errors in
assembly. Recently, a tool that allows gene prediction despite
these problems, even on short 454 reads, has been reported
(73), although its performance has yet to be evaluated in real
applications. The method is based on similarity comparisons of
the metagenomic nucleotide sequences either to the same met-
agenome or to other external sequences and the subsequent
discrimination of conserved coding sequences from con-
served noncoding sequences by synonymous substitution
rates. BLAST searches are conducted at the amino acid
level to provide higher resolution than nucleotide searches.

Both evidence-based and “ab initio” methods have been
used for the prediction and analysis of metagenomic data sets
(Table 1). Evidence-based gene calling has been used as the
sole method of gene calling in at least one metagenomic study
using Sanger reads (140) and all metagenomic studies using
unassembled pyrosequence data due to short read lengths (Ta-
ble 1). Since this approach relies entirely on comparisons to
existing databases, it has two major drawbacks. Low values of
similarity to known sequences either due to evolutionary
distance or due to the short length of metagenomic coding
sequences and the presence of sequence errors prevent the
identification of homologs. Moreover, novel genes without
similarities are completely ignored. Despite these drawbacks,
this approach has been used in several studies and can be
useful for gene-centric comparisons of metagenomes, espe-
cially in cases where the size of the sequence fragments is not
adequate for the ab initio gene prediction, such as high-com-
plexity metagenomes and metagenomes sequenced by high-
throughput parallel pyrosequencing.

Treating all ORFs as putative genes usually produces pro-
hibitive amounts of data, contains too much noise, and is
therefore very hard to use. Methods based on features of the
sequences, the size of the predicted ORFs, and the similarity to
known sequences have been used to lower the total number of
candidate coding sequences from a population of ORFs (151).

At the JGI, we are using two “ab initio” gene prediction
pipelines for the analysis of metagenomic data sets. The first
gene prediction pipeline uses fgenesB with specific training
models for sequences that can be assigned to phylogenetic
groups and generic models for the unassigned sequences (Ta-
ble 1). The second uses Genemark, which allows gene predic-
tion without the need for training sets and classification of
sequences. Both pipelines have proved to be quite accurate
when used on simulated data sets (http://fames.jgi-psf.org).
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Other studies have employed GLIMMER, MetaGene, and the
mORFind pipeline (Table 1).

RNA genes (tRNA and rRNA) are predicted using tools
such as tRNAscan (82) for tRNAs and similarity searches for
rRNAs. While tRNA predictions are quite reliable, it is not
uncommon for rRNA genes to be incompletely identified (in-
correct gene boundary coordinates) or even entirely missed. In
these instances, it is also not uncommon to see nonexistent
hypothetical protein-coding genes called in the place of rRNA
genes. Other types of noncoding RNA (ncRNA) genes can be
detected by comparison to covariance models (55) and se-
quence-structure motifs (84). However, searching of covari-
ance models and motifs is computationally expensive, and it is
prohibitively long for large metagenomic data sets. Overall, the
identification of other ncRNA genes is difficult, since their
sequences are not conserved and reliable “ab initio” methods
are lacking even for isolate genomes. High-throughput tran-
script (cDNA) sequencing holds great promise for improving
the accuracy of RNA gene prediction. Currently, genes encod-
ing ncRNAs are largely excluded from downstream analyses;
however, we may expect this situation to change in the coming
years as transcriptomic data enrich our inventories of these
genes.

There are several types of errors that can be made by a
gene-calling pipeline. A gene can be missed completely or
called on the wrong strand. A less severe mistake would call
part of the gene correctly but fail in estimating gene bound-
aries or call genes that are partly correct and partly wrong due
to chimeric assemblies or frameshifts (94). The quality of the
gene prediction relies on the quality of read preprocessing and
assembly. Gene-calling methods used on accurately assembled
sequences predict more than 90% of the genes that are in-
cluded in the data set correctly, as evidenced from studies of
simulated data sets (http://fames.jgi-psf.org). This large num-
ber was achieved with training on generic models or self-
trained algorithms. Gene prediction on unassembled reads ex-
hibits lower accuracy than that on contigs (�70% versus
�80%, respectively) (94), a result attributed to the small size
and greater chance of sequencing errors for individual reads.

Often, even in low-complexity communities, a large number
of reads belonging to less abundant organisms remain unas-
sembled. Although the genes predicted on the assembled se-
quences allow the metabolic reconstruction of the abundant
organisms, a better representation of the metabolic capacity of
the community is gained when genes from both contigs and
reads are included in the subsequent analyses as a majority of
the functionality may in fact be encoded in the unassembled
reads (94). Therefore, it is advisable to perform gene calling on
both reads and contigs. For high-complexity communities,
where assembly is minimal, gene calling on unassembled reads
is the only possibility.

Gene prediction is usually followed by functional annota-
tion. Functional annotation of metagenomic data sets is very
similar to genomic annotation and relies on comparisons of
predicted genes to existing, previously annotated sequences.
The goal is to propagate accurate annotations to correctly
identified othologs. However, there are additional complica-
tions in metagenomic data where predicted proteins are often
fragmented and lack neighborhood context. The annotation of
metagenomic data created by short-read methods, such as 454,

is even more complicated since most reads contain only frac-
tions of proteins.

At the JGI, we use profile-to-sequence searches to identify
functions. Protein sequences are compared to sequence align-
ment profiles from the protein families TIGRFAM (122),
PFAM (43), and COGs (131) using RPS-BLAST (91). PFAMs
allow the identification and annotation of protein domains.
TIGRFAMs include models for both domain and full-length
proteins. COGs also allow the annotation of the full-length
proteins. Unfortunately, although PFAMs and TIGRFAMs
are updated regularly, allowing the annotation of new protein
families, COGs are still lacking such updates. As a rule, the
assignment of protein function solely based on BLAST results
should be avoided, mainly because of the potential for error
propagation through databases (49, 75, 78).

In addition to annotation by homology, several methods for
context annotation are available. These include genomic
neighborhood (30, 103), gene fusion (38, 86), phylogenetic
profiles (106), and coexpression (87). We are aware of one
study that performed adapted neighborhood analysis on meta-
genomic data, which, combined with homology searches, in-
ferred specific functions for 76% of the metagenomic data sets
(83% when nonspecific functions are considered) (59). It is
possible that more context information will be used to predict
protein function in metagenomic data in the future.

It is common practice that all gene predictions and annota-
tions for microbial genomes are manually checked as part of
informatic QC pipelines. Such manual curation is not feasible
for metagenomic projects, although, as for the assembly, we
recommend manual curation of larger contigs. Therefore, the
quality of gene calling and annotation for the majority of meta-
genomic data rests solely on automated procedures. A recent
benchmarking study using simulated metagenomic data sets
suggests that there is significant room for improvement in
existing gene prediction and annotation tools (94). One final
note of caution: some vector-screening and -trimming pro-
grams only mask out rather than remove vector and low-quality
sequences, resulting in runs of N�s at the ends of reads and
contigs. When sequences are submitted to public databases,
terminal runs of N�s are removed as part of the submission
process, which can introduce systematic errors in the start-stop
coordinates of any genes predicted on the untrimmed reads
and contigs. Therefore, all reads and contigs should be
trimmed of terminal N runs prior to gene prediction and an-
notation.

DATA ANALYSIS

Gene prediction and annotation complete the list of proce-
dures that are routinely applied to both genomic and meta-
genomic data. While there is still great room for improvement
in applying a number of these steps to metagenomic data, they
constitute part of the standard data-processing pipeline at se-
quencing centers such as the JGI. Beyond this point, the data
analysis methods apply specifically to metagenomes.

Postsequencing Community Composition Estimates

One of the first analyses that can be performed on meta-
genomic data according to standard processing steps is a re-
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evaluation of the community composition estimate, this time
directly from the metagenomic data itself. This is important for
interpretations of the data since biases in the initial estimates,
such as PCR skewing (130, 143), are different from biases
introduced during metagenomic data generation (described
below). Mapping of conserved phylogenetically informative
marker genes such as 16S and 23S rRNA (rRNAs), RecA
(DNA repair protein), EF-Tu, EF-G (elongation factors),
HSP70 (heat shock protein), and RpoB (RNA polymerase
subunit) onto their reference trees has been used to assess both
organism identity and relative abundance (140). Single-copy,
mostly ribosomal, genes have been applied for the same pur-
pose (23, 47, 141). Ubiquitous single-copy genes have the ad-
vantage of being present once in all microbial genomes and are
therefore thought to provide more accurate estimates of com-
munity composition than markers such as 16S rRNA genes
with a variable copy number (141).

Marker gene analyses are performed as follows. An align-
ment of each gene is prepared from a reference data set,
usually from all available complete genomes. The marker
genes are identified in the metagenomic data set of interest
and included in the reference alignment. For the quantification
of populations, the depth of contigs containing the marker
genes should be taken into account (135, 142). Trees are cal-
culated, and the relative positions of metagenomic genes are
identified in the tree. There are several limitations to commu-
nity composition estimates based on the phylogenetic infer-
ence of single-copy genes identified in metagenomic data sets.

First, the reference genome database is currently incomplete
and highly biased toward just three bacterial phyla (Proteobac-
teria, Firmicutes, and Actinobacteria) out of at least 50 phyla
(62). This means that the accurate placement of metagenomic
genes is compromised if they originate from organisms not
belonging to the three well-represented phyla, with the excep-
tion of the 16S rRNA gene, which is broadly used to define
taxonomic groups (34). Initiatives to improve the genome se-
quence representation of the tree of life should help to rectify
this problem, such as the Genomic Encyclopedia of Bacteria
and Archaea pilot project at the JGI (http://www.jgi.doe.gov
/programs/GEBA/). Even so, the majority of microbial lineages
still lack cultured representatives (3, 62), complicating our
ability to obtain representative genome sequences. Another
strategy to improve the reference database for comparative
analyses is to obtain genome sequences of isolates in parallel
with metagenome sequences from the same habitat, as is being
done, for example, in the Human Microbiome Project (http:
//nihroadmap.nih.gov/hmp/).

Second, genes derived from metagenomic data sets, partic-
ularly those with minimal assembly, are often fragmented and
produce incomplete alignments. Indeed, it is often the case
that metagenomic gene fragments from the same protein fam-
ily are entirely nonoverlapping. This precludes the use of evo-
lutionary distance methods, as infinite distances are created in
the pairwise distance matrix, severely compromising the result-
ing tree (18). Discrete character inference methods, particu-
larly maximum likelihood, can tolerate incomplete alignments
to a certain extent. Alternative approaches to address the
problem include making separate trees for each metagenomic
gene only in the context of the reference data set, subdividing
the alignment into smaller parts to produce more complete

subalignments that can still contain multiple metagenome-de-
rived genes, or inserting partial sequences into a reference tree
of full-length sequences using, for example, probabilistic max-
imum likelihood placement (142) or the ARB parsimony in-
sertion tool (83).

Third, erroneous gene calls, particularly ribosomal proteins,
are sometimes missed by automatic gene callers because of
their small size (94).

Finally, and perhaps most importantly, conserved phyloge-
netically informative genes represent only a small fraction of
the total metagenomic data set. For example, 100 Mbp of
Sanger sequence will typically yield about a dozen mostly par-
tial-length sequences of any given marker gene. In addition, it
has recently come to light that single-copy genes are particu-
larly prone to underrepresentation in shotgun libraries due to
their toxicity to the E. coli host (127). Furthermore, since the
toxicity is due to the expression of the introduced gene, it
varies between organisms depending on the ability of E. coli to
transcribe and translate the introduced gene (127). Therefore,
small numbers of incompletely overlapping marker sequences,
together with the toxicity effect, compromise the ability to
reliably infer community composition from single-copy genes.

Sequence similarity tools such as BLAST (7) can be used
to identify homologs in reference sequences (64). Such an
analysis results in a much greater fraction of the data set
being involved in the composition estimate but suffers from
other effects. Potentially, larger genomes are expected to
generate more matches than smaller genomes (125), and
therefore, the assessment is of gene rather than organism
abundance. The closest BLAST hit is not necessarily the
nearest phylogenetic neighbor (72), and therefore, classify-
ing by BLAST hits can be misleading, particularly if only
distantly related homologs are available in the reference
database. Additionally, the potential for horizontal gene
transfer between sympatric populations can cause the recip-
ient organism to be identified as the donor organism. Pres-
ently, the biggest problem for BLAST-based composition
estimation is the poor representation of microbial diversity
by sequenced isolates (62, 66), often resulting in remote
matches to phylogenetically distant organisms or the ab-
sence of any hits. In our experience, BLAST-based methods
overestimate the abundance of highly covered taxa such as
the Proteobacteria and Firmicutes, especially if only the top
hit is taken into consideration. One recent implementation
of BLAST-based community composition profiling, MEGAN
(64), addresses this problem by assigning sequence fragments to
the lowest common ancestor of the set of taxa that it hit in
the comparison, thereby reducing false matches. Unfortu-
nately, this often results in the bulk of a data set being
assigned to very-high-level groupings, such as Bacteria, or
being unclassified altogether. Again, the problem lies with
the reference genome database rather than the tool and can
be expected to improve as the bias in the database is ad-
dressed.

Finally, given that fundamental upstream processes such as
DNA extraction can produce an equal or greater skewing of
community representation as any bioinformatic analysis, re-
searchers should, if possible, calibrate their data against the
original intact community using methods such as 16S rRNA-
targeted FISH.
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Binning

A metagenomic sequence pipeline produces a collection of
reads, contigs, and genes. Associating these data with the or-
ganisms from which they were derived is highly desirable for
the interpretation of the ecosystem. This process of association
between sequence data and contributing species (or higher-
level taxonomic groups) is called binning or classification. The
most reliable binning is assembly; that is, in a good assembly,
all reads in a contig are derived from the same species, with the
optimal binning being a closed chromosome. As described
above, this is often not the case, and some level of coassembly
is usually encountered in metagenomic data sets, particularly
between strains (see “Assembly”). However, binning methods
rarely have the resolution to discriminate between strains of
the same species, so strain coassembly is not a practical con-
cern when it comes to binning. In fact, a much coarser level
assignment of sequences can be useful for interpreting micro-
bial communities, such as the classification of fragments from
a termite hindgut analysis into two dominant class-level
groups, the treponeme spirochetes and fibrobacter-like bacte-
ria, with each group comprising numerous but functionally
related species (146). In this regard, less stringent “extreme”
assemblies (115), which certainly produce chimeric and misas-
sembled contigs, may be a useful binning approach.

In many ways, binning and community composition esti-
mates share a common goal, the classification of sequence data
into taxonomic groups, and so there is overlap in the methods
to achieve this goal. Phylogenetic marker genes can be used to
bin sequence fragments, but this approach suffers from the
same problems as those in community profiling, namely, an
incomplete and biased reference database, difficulties with tree
building, and a low overall incidence of marker genes (�1%)
in the metagenomic data set. Similarly, sequence comparison
and visualization tools such as BLAST and MEGAN (64) can
also be used to bin a larger cross section of sequence fragments
to phylogenetic groups, with the associated problems described
above.

An entirely different binning approach is based on genome
sequence composition. Cellular processes such as codon usage,
restriction-modification systems, and DNA repair mechanisms
produce sequence composition signatures, primarily oligonu-
cleotide (word) frequencies, that are distinct in different ge-
nomes (35, 69, 70). This property of genomes has been ex-
ploited by a variety of methods to identify groups of sequences
with similar composition features and to determine their phy-
logenetic origins (2, 29, 98, 117, 132), which can be used not
only to bin metagenomic data but also to identify atypical
regions within genomes, such as laterally transferred genes.
The words can be of any length, usually from 1 (GC content)
to 4 nucleotides and usually no longer than 8 nucleotides.
Typically, longer words give better resolution but also require
longer sequences and are more computationally expensive,
with the best results being provided by words between 3 and 6
nucleotides long.

Composition-based methods can be divided into supervised
and unsupervised (clustering) procedures. Unsupervised pro-
cedures cluster metagenomic fragments in composition signa-
ture space without the need to train models on reference
sequences and include self-organizing maps (1) and the pro-

gram TETRA (132). An advantage of unsupervised classifica-
tion is that phylogenetically novel populations lacking close or
even distantly related sequenced taxa can potentially be binned
by shared sequence composition features, although the iden-
tification of the clustered fragments still relies on sequence
similarity to reference organisms. Such populations, even when
well represented in metagenomes, cannot be binned directly by
homology-based methods. A drawback of unsupervised meth-
ods is that they tend to focus on major classes in a data set and
will not perform well on low-abundance populations. Super-
vised methods classify metagenomic fragments against models
trained on classified reference sequences and, in principle, can
assign fragments from low-abundance populations if there is a
model learned from reference data. Examples of supervised
approaches include Bayesian classifiers (29) and the support
vector machine-based phylogenetic classifier Phylopythia (95).
As they are able to learn the relevant features that distinguish
a particular population from others using the labeled reference
sequences, supervised methods usually achieve higher classifi-
cation accuracy (sensitivity and specificity) than unsupervised
methods and, therefore, are preferable if training data are
available. Further details on the underlying principles and rel-
ative merits of different binning methods can be found in a
recent opinion article on metagenomic binning (96).

At the JGI, we have had most experience with the supervised
classifier Phylopythia (95). This program uses generic or sam-
ple-specific models, with the former usually being derived from
reference genomes and the latter usually being derived from
the metagenomic data set itself. Perhaps not surprisingly, sam-
ple-specific models based on training data from the metage-
nome under study produced the most specific and sensitive
binning of the available approaches as determined by simu-
lated data sets (94) or the subsequent assembly of the targeted
population (95), often increasing the amount of classified sam-
ple data by an order of magnitude over the training set. Ideally,
at least 100 kbp of training data is required to make a sample-
specific model (96). For dominant populations, this amount of
target population data can often be found using a single phy-
logenetic marker gene identified on a large contig that can be
extended to other contigs by mate pair information. For low-
abundance populations, identifying 100 kbp of training data
may not be possible based on marker genes, particularly if the
population is not closely related to sequenced reference ge-
nomes. However, higher-level taxonomic models may still be
feasible in which multiple species contribute to the training set.
This approach was used successfully for the sample-specific
binning of treponeme spirochete species that were collectively
the dominant group in a termite hindgut symbiont community
(146).

Sequence length is a critical parameter for all composition-
based classifiers, with no method convincingly classifying se-
quences of less than 1 kb long due to the limited number of
words that are contained in short sequences (96). This pre-
cludes the classification of individual Sanger and pyrosequence
reads, meaning that largely or completely unassembled
complex communities cannot be binned at all by composi-
tion-based methods.

Finally, simulations of fractionating a community into even-
course subsets of component species prior to sequencing sug-
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gest that the overall proportion of assembled sequences will be
greater (15), thereby simplifying the binning process.

Analyzing Dominant Populations

In several aspects, the analysis of low-complexity communi-
ties resembles the analysis of isolate genomes. As with isolate
genomes, draft-level composite genomes of dominant popula-
tions have sufficient coverage and gene context to allow a
reasonably comprehensive metabolic reconstruction in which
most major pathways can be elucidated. If more than one
dominant population is sequenced, the potential metabolic
interplay of those populations may also become apparent. For
example, a metagenomic study of an acid mine drainage bio-
film revealed that while all dominant bacterial and archaeal
populations were potentially capable of iron oxidation (the
main energy-generating reaction in this habitat), only Lepto-
spirillum group III had genes for nitrogen fixation, suggesting a
keystone function for this species since the habitat is limited in
externally derived fixed nitrogen (138). Similarly, a metabolic
reconstruction of the dominant bacterial symbiont populations
in a gutless worm suggested a model for how these organisms
together satisfy the nutritional requirements of their host
(150). As with draft genomes of isolates, caution needs to be
exercised in inferring the absence of metabolic traits since the
relevant genes may be present in sequencing gaps, particularly
if the trait is encoded by only one or two genes. For example,
respiratory nitrate reductase necessary for denitrification was
not found in the draft composite population genome of “Can-
didatus Accumulibacter phosphatis” type II despite circum-
stantial experimental evidence, suggesting that this organism is
capable of denitrification (47).

The major difference between isolate genomes and compos-
ite dominant population genomes is that the latter are usually
not clonal due to genetic variation inherent in natural popu-
lations (148). Genomic differences between individuals and
strains within a population can take the form of SNPs and
rearrangements (insertions, deletions, inversions, transitions,
and duplications). The coassembly of genetically distinct
strains (haplotypes) will produce high-quality discrepancies
(SNPs) in the consensus that finishing would normally try to
resolve. However, in metagenomic data sets, SNPs can be
mined in a number of ways to provide insights into population
structure and evolution. For example, total SNP frequency
provides a quantitative estimate of the degree of genetic vari-
ation within a species population, which has been found to
range from virtually clonal in enrichment cultures (129) and an
anaerobic digester (107) to highly polymorphic in acid mine
drainage archaeal populations (138). The ratio of nonsynony-
mous to synonymous SNPs in protein-coding genes within a
population provides an estimate of the fraction of genes under
selective pressure. Furthermore, the ratio of haplotypes for
individual SNPs (site frequency spectra) can be used to esti-
mate important parameters in population genetics such as the
scaled mutation rate and scaled exponential growth rate (68).
SNPs also highlight junctions of homologous recombination
between strains, allowing the degree of sexuality within a pop-
ulation to be estimated (148). In all cases, the clear advantage
of using environmental shotgun sequence data for these anal-

yses over isolate sequence data is a broader and less biased
sampling of genetic variation within a population (4, 148).

A complication associated with interpreting these data is
sequencing error. Setting base quality thresholds too low will
introduce noise into the analysis, while setting it too high will
discard potentially useful information. The latter may be an
important consideration when read depth is low. A conserva-
tive approach to avoid mistaking errors as polymorphisms is to
score only SNPs with haplotypes represented by at least two
different reads requiring a minimum read depth of 4. A second
complication is the inability to easily distinguish between or-
thologous and paralogous regions. Unless repeats occur on the
same (manually verified) contig or scaffold, such as in the case
of a neighboring gene duplication, it is difficult to distinguish
repeats from orthologous regions in different organisms. This
problem is alleviated if the composite population is finished.

Several tools are available for the visualization and anal-
ysis of polymorphisms in composite population assemblies.
Consed, developed to assist in the finishing process, is a
generically useful graphical tool for viewing assemblies at
the nucleotide level (53). A note of caution, however, is that
Consed sometimes masks stretches of nucleotide sequence
with X’s, and when SNP analysis is performed, it identifies
these X characters as being SNPs. Therefore, manual postpro-
cessing is required for Consed results. SNP-VISTA (124) is an
adaptation of the comparative genomics tool VISTA (44), de-
veloped specifically to visualize SNPs in alignments. The input
for this program is the BLASTn output for user friendliness.
Reads are ordered by haplotype using a clustering algorithm
calculated for sliding windows. Putative recombination sites
are detected by sudden changes in cluster composition be-
tween adjacent windows (Fig. 5). Strainer is also dedicated
software for the analysis of genetic variation in populations
(39). As the name suggests, it facilitates the reconstruction of
individual strains from coassembled sequences, clusters reads
by haplotype from which it predicts gene and protein variants,
identifies conserved regulatory sequences, and quantifies and
displays homologous recombination sites along contigs.

As for fine-scale genetic variation, methods for visualizing
and analyzing gross within-population variation caused by re-
arrangements are beginning to emerge. For example, recruit-
ment plots display alignments of environmental reads against a
reference sequence such as an isolate genome, with one axis
showing read location along the reference and the other axis
showing sequence identity to the reference. The depth of align-
ment at each point is a measure of the frequency of occurrence
of the particular genomic region. Genomic regions that are
present in all members of the species will be covered by mul-
tiple reads, while strain-specific regions will have shallow or no
coverage (Fig. 6), effectively highlighting hypervariable regions
in a population. A number of important biological insights
have been made using this type of analysis, including the dis-
covery of genomic islands encoding ecologically important
genes (26), and phage defense mechanisms, notably CRISPRs,
are among the fastest-evolving elements in the genome (137).

Recruitment plots can be enhanced by displaying data from
multiple metagenomes against a reference sequence distin-
guished by color coding. This is particularly effective for spatial
series where differences between allopatric populations can be
highlighted and correlated with metadata (115). Rearrange-
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ments such as inversions or indels can be specifically visualized
using a variant of recruitment plotting. Instead of plotting all
reads, only reads with inconsistently distanced end pairs are
shown, which draws attention to rearrangements (115). Simi-
larly, individual reads that do not map 1:1 onto the reference
genome can be plotted to highlight inversion, insertion, or
deletion boundaries. As has been discussed in the context of
several other analyses, recruitment plots can be limited by the
availability of reference genomes unless reference sequences
are forthcoming from the metagenomic data set itself.

Gene-Centric Analysis

Metagenomic sequencing of high-complexity microbial com-
munities results in little or no assembly of reads (135), which
precludes the use of microheterogeneity analyses described
above for dominant populations. The high coding density of
bacterial and archaeal genomes and average gene size do,
however, mean that most reads will capture a coding sequence.
This allows a gene-centric analysis of the data that treats the
community as an aggregate, largely ignoring the contribution
of individual species. Genes and gene fragments from a given
metagenomic data set are mapped to gene families, providing
an estimate of relative representation (Fig. 7). The power of
the method lies in comparing relative gene family or subsystem
abundances between metagenomes to highlight functional dif-
ferences. Since determining relative gene family frequencies
within and between metagenomic data sets is a key aspect of
the method, it is important that the frequencies are not masked
by assembly. Either the analysis should be conducted on un-
assembled reads or the read depth of contigs should be taken
into account (94). The approach was first described by Tringe
et al. (134, 135), in which they coined the term environmental
gene tags because of the fragmentary nature of the data, akin
to expressed sequence tags. Other groups published similar but
distinct approaches in quick succession (50, 33, 113).

The implicit assumption of gene-centric analysis is that high

relative abundance equates to metabolic and ecological signif-
icance. Knowledge of the ecosystem is required for simple
sanity checks. For example, one of the most overrepresented
gene families in ocean surface waters relative to soil and whale
fall (deep ocean) samples is the proteorhodopsin family, which
function as light-driven proton pumps (134), a function that is
receiving great attention as a major missed energy flux in
surface waters (116). A recent RNA-based study of a pico-
plankton community in the photic zone confirmed that prote-
orhodopsins are indeed highly expressed; however, other over-
represented gene families, such as DNA repair photolyase,
were not highly expressed, bringing into question the metabolic
or ecological significance of their high copy numbers in the
community (45). Conversely, other gene families that were
poorly represented in the metagenomic data, such as pufB,
encoding a subunit of a light-harvesting protein, were highly
expressed (45), indicating that potentially important functions
will be overlooked or underestimated by DNA-based gene-
centric analysis. In addition to expression levels, other factors
such as the stability of mRNAs and proteins are likely impor-
tant determinants of ecological significance.

In addition to violations of the implicit assumption, the
method has a number of technical limitations. Chen and
Pachter estimated that 6 Gbp of sequence data would be re-
quired to sample half the genes in a simulated soil community
(21), whereas a typical metagenome project is on the order of
100 Mbp. Therefore, only genes present in high copy numbers
in higher-abundance organisms will be sampled, meaning that
the method is actually very low resolution. Environmental gene
tag data are also noisy due to the uneven cloning efficiency of
different genes (127), differences in gene length (longer genes
will be detected more often on reads than short genes), and
errors in gene calling and annotation. A more pervasive prob-
lem may be the inability to normalize gene prediction between
data sets. For example, read length will affect the ability to call
genes: the shorter the read, the lower the gene prediction
resolution. Therefore, Sanger (�750-bp reads) and pyrose-

FIG. 5. Screenshot of SNP-VISTA showing SNPs in individual reads relative (and aligned) to a reference contig belonging to “Candidatus
Accumulibacter phosphatis” (74) (labeled query at the bottom and highlighted in pale green). (Top) Alignment condensed to show only
polymorphic columns color coded by base (see left for color coding). (Bottom) Expanded alignment. Note that reads are ordered dynamically by
similarity for the window under investigation to facilitate SNP pattern recognition.
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quence (100- to 200-bp reads) data sets cannot be directly
compared using gene-centric analysis because of the differ-
ences in gene-calling sensitivities between the two data types
(149). A final word of caution on technical considerations:
whole-genome amplification of environmental DNAs is be-
coming a more common method, particularly for low-biomass
microbial communities (9, 36). Several studies have shown that
although some degree of bias is introduced by multiple-strand-
displacement whole-genome amplification using Phi29 DNA
polymerase, it has sufficient fidelity to allow meaningful com-
parative analyses in most instances (10, 12, 110). However, the
amplification step should be kept in mind when interpreting
gene-centric analyses, particularly between amplified and
nonamplified data sets.

To differentiate between signal and noise, statistical tests to
estimate the confidence of over- and underrepresentations of
gene families have been reported (50, 113). Despite these
statistical reassurances, simulated metagenomic data sets show
that up to 20% of COGs may have incorrect frequency calls
and should be interpreted with caution (94). However, the
error rate is reduced when gene family frequencies are
grouped by metabolic pathway, because error in any given gene
family will be averaged out in a multigene pathway. One im-

portant potential source of error when gene family frequencies
are mapped onto pathways is an uneven coverage of the path-
way. For example, broad gene families such as oxidoreductases
can be nonspecifically mapped to a pathway via incomplete EC
numbers and give the false appearance that the pathway is
overrepresented. In the extreme case, the pathway may be
entirely absent from the community, and only the nonspecific
gene family is mapped to the pathway. This type of error can be
overcome by weighting pathways for gene coverage or exclud-
ing incomplete EC numbers from the analysis. In addition, to
avoid spurious prediction, there is no substitution for manual
inspection by experts of all results obtained by automatic data
mining.

DATA MANAGEMENT

Shotgun sequencing of environmental samples produces
massive amounts of data that already dwarf the data for exist-
ing genomic sequences in public databases. This trend will not
only continue but accelerate as the cost of sequencing contin-
ues to fall and more researchers enter into the field, drawn by
the promise of metagenomics and greater access to high-
throughput sequencing via new sequencing technologies. For

FIG. 6. Screenshot of JCVI’s Advanced Reference Viewer (http://gos.jcvi.org/openAccess/advancedReferenceviewer.html). A reference contig
or genome, in this case, Prochlorococcus marinus strain AS9601, shown on the x axis, against which metagenomic reads, in this case, from the Global
Ocean Survey (115), is aligned and arrayed by similarity to the reference sequence on the y axis. Reads have been color coded according to sampling
site to highlight site-to-site variations in Prochlorococcus populations but can be color coded by any type of metadata or other features such as the
consistency of read mate pairs. Genomic islands peculiar to strain AS9601 are easily identified as gaps in the read coverage (between 60 and 70
kb). This viewer also allows users to zoom into regions of interest for higher resolution. (Image courtesy of Doug Rusch.)
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the average researcher to make sense of this mountain of data,
dedicated data management resources are required. There is a
variety of Web-based and standalone computational resources
available for comparative genomic analyses including ACT
(20), MicrobesOnLine (6), CMR (109), ERGO (104), PUMA2
(85), COGENT�� (52), and IMG (92), but data management
systems have only recently been developed specifically for met-
agenomic analysis, notably CAMERA (123), IMG/M (91), and
SEED (102).

These systems allow the comparison of a metagenome of
interest to other genomes and metagenomes on multiple lev-
els, including at the gene, protein family, pathway, scaffold, or
complete genome level, and all systems include variants of the
metagenome-specific tools described in the preceding sections
(90). Most systems also allow some degree of curation by users
to improve annotation. Although the same type of analyses can
be performed without the aid of such systems, prepackaged
tools with transparent user interfaces can save considerable
amounts of time even for expert users. Custom analyses need
to be performed externally, and the main use of dedicated
metagenomic databases in these cases is improved curation
over generic databases.

It is fair to say that all developers of metagenomic data
management and analysis systems are struggling to keep pace
with new data. This acute problem is manifest at two levels.
The first level is data volume. Genomic data are more com-
pressed than metagenomic data by virtue of assembly, and
underlying read data are typically not incorporated into com-
parative genome systems. In contrast, some metagenomic sys-
tems keep not only read information but also quality data
associated with reads for population analysis and QC. The
problem is expected to accelerate in the future as new sequenc-
ing technologies produce much larger volumes of data than
traditional Sanger sequencing. For example, a single Illumina
run produces �1 Gbp of sequence data (albeit short reads of
�50 bp), compared to only 0.7 Mbp of �750-bp reads for a

standard Sanger run. While trace quality information may be
important for quality assessment, their storage together with
the sequence and incorporation of quality information into
sequence search methods might not be feasible. The second
level is pairwise comparisons. The cornerstone of comparative
analysis is all-against-all comparisons. Ideally, these should be
precomputed to prevent lengthy on-the-fly calculations for us-
ers. Unfortunately, all-against-all comparisons scale poorly
(quadratically) and can become extremely computationally ex-
pensive for metagenomic data. For example, 28.6 million pro-
tein sequences were compared using all-against-all BLAST
searches in the Global Ocean Survey study, which required
more than 1 million computing hours (151). The sheer size of
the computational effort needed for this metagenomic data set
was unprecedented in sequence analysis. A parallelized imple-
mentation of BLAST, ScalaBLAST (101), is used to precom-
pute all pairwise gene similarities at the amino acid level for
IMG/M, reducing the computation time by �30-fold (90).
ScalaBLAST uses a combination of database sharing and task
scheduling to achieve high computational performance (101).
Computationally intensive tasks can also be bypassed by profile
scans using profile databases such as TIGRFAM, PFAM,
COGS, and InterProScan. Because the number of profiles is
constant, computational complexity scales linearly with the
growth of the data, as opposed to quadratically in the case of
all-against-all comparisons. One drawback of profile searches
is that new families will not be identified, but such novel fam-
ilies will have unknown functions (hypothetical families) and
will not contribute to metabolic reconstruction efforts in the
first instance.

It remains to be seen if any data management system will be
capable of incorporating all metagenomic data and present the
data in a precomputed format for comparative analyses. More
likely, subsets of the data united by common phylogenetic or
functional themes will be made into separate databases for
analyses.

FIG. 7. Screenshot (at left) from the IMG/M database (91) showing one implementation of gene-centric analysis available through this system.
Four PFAM families involved in cellulose hydrolysis are shown in columns color coded to match the pathway schematic to the right. The relative
representation of these families in 12 metagenomic data sets (rows) is shown as fractions normalized for data set size. Overrepresented families
are further highlighted by color: bisque, moderately overrepresented; yellow, highly overrepresented. This figure shows that termite hindgut
followed by human gut samples have the greatest overrepresentation of genes involved in cellulose hydrolysis and, indeed, are the only communities
of the compared data sets that appear to have the enzymatic potential to break down cellulose. It also shows that one whale fall sample, a soil
sample from the drainage path of a silage storage bunker, and one laboratory-scale phosphorus-removing sludge sample are moderately
overrepresented in genes for processing the dimer cellobiose. (Image courtesy of Falk Warnecke.)

574 KUNIN ET AL. MICROBIOL. MOL. BIOL. REV.



The final stage of any sequencing project is the submission of
the data to public repositories such as GenBank. Metagenomic
data submission is more problematic than isolate genome sub-
mission because it is usually not discrete. For example, should
a metagenomic data set be described as a single entry or as
multiple entries? On one hand, the data are a collection of
sequence fragments from multiple species, which argues for
multiple entries. On the other hand, there is often a single
sampling site and a single study performed on the sequence,
although this too is changing as single studies incorporate
spatial or temporal sampling. At the JGI, we submit the data as
one entry, and, whenever possible, subdivide it into bins of
organisms. For example, the metagenome of the Olavius
algarvensis symbionts was submitted under accession num-
ber AASZ00000000, with scaffolds ranging between acces-
sion numbers AASZ01000001 and AASZ01005597. The
scaffolds assigned to particular genome bins were then as-
signed to subaccession numbers, such as subaccession num-
bers DS021107 to DS021197 for the O. algarvensis gamma 1
symbiont.

CONCLUDING REMARKS

We hope that this review will serve as a useful primer for
researchers embarking on their first metagenomic project. The
field is moving forward rapidly, driven by enormous improve-
ments in sequencing technology and the availability of many
complementary technologies (145). We therefore anticipate
that methodological details presented in this review will
change markedly in the coming years or even months, partic-
ularly when Sanger sequencing is no longer the main source of
metagenomic data. The discussed methodological consider-
ations and approaches for analyzing communities and popula-
tions, however, will no doubt persist for much longer, enabling
interpretations of metagenomic data sets and likely contribut-
ing many more profound insights into the microbial world.
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